
Public

SMART CONTRACT AUDIT REPORT

for

DIVA protocol

Prepared By: Xiaomi Huang

PeckShield
May 21, 2022

1/20 PeckShield Audit Report #: 2022-199

contact@peckshield.com


Public

Document Properties

Client DIVA protocol
Title Smart Contract Audit Report
Target DIVA protocol
Version 1.0
Author Xuxian Jiang
Auditors Luck Hu, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 21, 2022 Xuxian Jiang Final Release
1.0-rc May 19, 2022 Luck Hu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2022-199



Public

Contents

1 Introduction 4
1.1 About DIVA protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 About PeckShield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Findings 9
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Detailed Results 11
3.1 Improved Validation on Function Arguments . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Suggested Event Generation For redeemPositionToken() . . . . . . . . . . . . . . . . 13
3.3 Trust Issue of Admin Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Suggested immutable Usages For Gas Efficiency . . . . . . . . . . . . . . . . . . . . 17

4 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2022-199



Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
DIVA protocol, we outline in this report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contract can be further improved due to the presence
of the identified issues. This document outlines our audit results.

1.1 About DIVA protocol

DIVA protocol adopts the Diamond Standard (EIP-2535) and aims to be a decentralized piece of infras-
tructure that allows its users to create and settle fully customizable event-linked products (also known
as derivatives) in a permissionless way. After depositing collateral, a user is issued two directionally
reversed positions, referred to as long and short positions, that combined represent a claim on the
deposited collateral, but when held in isolation exposes the user to the upside (via the long position)
or downside (via the short position) of the underlying metric. The payoffs of long and short positions
are zero-sum meaning that for every unit of collateral that the long position may gain, the short
position will lose and vice versa. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of DIVA protocol

Item Description
Name DIVA protocol

Website https://www.divaprotocol.io/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 21, 2022

In the following, we show the Git repositories of reviewed files and the commit hash values used

4/20 PeckShield Audit Report #: 2022-199



Public

in this audit.

• https://github.com/divaprotocol/diva-contracts.git (34099a5)

• https://github.com/divaprotocol/whitelist.git (fba517f)

And these are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/divaprotocol/diva-contracts.git (443652d)

• https://github.com/divaprotocol/whitelist.git (fba517f)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

5/20 PeckShield Audit Report #: 2022-199

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com


Public

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/20 PeckShield Audit Report #: 2022-199



Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/20 PeckShield Audit Report #: 2022-199



Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2022-199



Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/20 PeckShield Audit Report #: 2022-199



Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the DIVA protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 1

Total 4

We have so far identified a list of potential issues: some of them involve the coding practices,
while others refer to the concerns of admin keys, etc. For each uncovered issue, we have therefore
developed test cases for reasoning, reproduction, and/or verification. After further analysis and
internal discussion, we determined a few issues of varying severities (Medium/Low/Informational)
need to be brought up and paid more attention to, which are categorized in the above table. More
information can be found in the next subsection, and the detailed discussions of each of them are in
Section 3.

10/20 PeckShield Audit Report #: 2022-199



Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity vulner-
ability, 2 low-severity vulnerabilities, and 1 informational issue.

Table 2.1: Key DIVA protocol Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Validation Of Function Argu-

ments
Coding Practices Fixed

PVE-002 Informational Suggested Event Generation For re-
deemPositionToken()

Coding Practices Fixed

PVE-003 Medium Trust Issue Of Admin Keys Security Features Confirmed
PVE-004 Low Suggested immutable Usages For Gas

Efficiency
Coding Practices Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/20 PeckShield Audit Report #: 2022-199



Public

3 | Detailed Results

3.1 Improved Validation on Function Arguments

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: PoolFacet

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [2]

Description

The PoolFacet contract provides a createContingentPool() routine to create a new contingent pool
and mint short and long position tokens for users. At the beginning of the routine, it checks the input
parameters for validity (lines 28-38). While examining the parameters validation in this routine, we
notice the absence of the validation for a key pool parameter.

To elaborate, we show below the code snippet of the PoolFacet::createContingentPool() routine.
As the name indicates, it is designed to accept user input and create a contingent pool for users.
The pool has a key parameter expiryTime which represents the expiration time of the position tokens
expressed as a unix timestamp in seconds. And the value of the reference asset observed at that
point in time determines the payoffs for long and short position tokens. Per design, the user needs to
give a value in the future for the expiryTime. However, this routine doesn’t validate the expiryTime.
As a result, the user may give an expiration date in the past which makes the created pool invalid.
Based on this, we suggest to validate the expiryTime to be a reasonable value in the future.

14 function createContingentPool(PoolParams calldata _poolParams)
15 external
16 override
17 nonReentrant
18 returns (uint256)
19 {
20 // Get references to relevant storage slots
21 LibDiamond.PoolStorage storage ps = LibDiamond.poolStorage ();
22 LibDiamond.GovernanceStorage storage gs = LibDiamond.governanceStorage ();

12/20 PeckShield Audit Report #: 2022-199



Public

23
24 // Create reference to collateral token corresponding to the provided pool Id
25 IERC20Metadata collateralToken = IERC20Metadata(_poolParams.collateralToken);
26
27 // Check validity of input parameters
28 require(bytes(_poolParams.referenceAsset).length > 0, "DIVA: no reference asset"

);
29 require(_poolParams.floor <= _poolParams.inflection , "DIVA: floor > inflection")

;
30 require(_poolParams.cap >= _poolParams.inflection , "DIVA: cap < inflection");
31 require(_poolParams.dataProvider != address (0), "DIVA: data provider 0x0");
32 require(_poolParams.gradient <= 10**18 , "DIVA: gradient > 1e18");
33 require(_poolParams.collateralAmount >= 10**6, "DIVA: collateral amount < 1e6");

// to reduce rounding errors
34 require(_poolParams.collateralAmount <= _poolParams.capacity , "DIVA: pool

capacity exceeded");
35 require(
36 (collateralToken.decimals () <= 18) && (collateralToken.decimals () >= 6),
37 "DIVA: collateral token decimals > 18 or < 6"
38 );
39
40 // Increment ‘poolId ‘ every time a new pool is created. Index
41 // starts at 1. No overflow risk when using compiler version >= 0.8.0.
42 ps.poolId ++;
43 ...
44 // Store ‘Pool ‘ struct in ‘pools ‘ mapping for the newly generated ‘poolId ‘
45 ps.pools[ps.poolId] = LibDiamond.Pool(
46 _poolParams.floor ,
47 _poolParams.inflection ,
48 _poolParams.cap ,
49 _poolParams.gradient ,
50 _poolParams.collateralAmount ,
51 0, // finalReferenceValue
52 _poolParams.capacity ,
53 block.timestamp ,
54 address(_shortToken),
55 0, // payoutShort
56 address(_longToken),
57 0, // payoutLong
58 _poolParams.collateralToken ,
59 _poolParams.expiryTime ,
60 address(_poolParams.dataProvider),
61 gs.protocolFee ,
62 gs.settlementFee ,
63 LibDiamond.Status.Open ,
64 _poolParams.referenceAsset
65 );
66
67 // Number of position tokens is set equal to the total collateral to
68 // standardize the max payout at 1.0.
69 _shortToken.mint(msg.sender , _poolParams.collateralAmount);
70 _longToken.mint(msg.sender , _poolParams.collateralAmount);

13/20 PeckShield Audit Report #: 2022-199



Public

71
72 // Log pool creation
73 emit PoolIssued(ps.poolId , msg.sender , _poolParams.collateralAmount);
74
75 return ps.poolId;
76 }

Listing 3.1: PoolFacet::createContingentPool()

Recommendation Enforce the parameters validation in the createContingentPool() routine to
ensure the input expiryTime is a reasonable value in the future.

Status This issue has been fixed by this commit: 8ccacfa.

3.2 Suggested Event Generation For redeemPositionToken()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SettlementFacet

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [4]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

While examining the events that reflect the position token dynamics in the SettlementFacet::

redeemPositionToken() routine, we notice there is a lack of emitting an event to reflect the redeeming
of the given position token. To elaborate, we show below the code snippet of the SettlementFacet::

redeemPositionToken() routine.

197 function redeemPositionToken(
198 address _positionToken ,
199 uint256 _amount
200 )
201 external
202 override
203 nonReentrant
204 {
205 // Get references to relevant storage slots
206 LibDiamond.PoolStorage storage ps = LibDiamond.poolStorage ();

14/20 PeckShield Audit Report #: 2022-199

https://github.com/divaprotocol/diva-contracts/commit/8ccacfa


Public

207 LibDiamond.GovernanceStorage storage gs = LibDiamond.governanceStorage ();
208 ...

210 uint8 _decimals = (IERC20Metadata(_pool.collateralToken)).decimals ();

212 // If status is "Confirmed", burn position tokens and return collateral to user
213 if (_pool.statusFinalReferenceValue == LibDiamond.Status.Confirmed) {
214 // Burn position tokens
215 _positionTokenInstance.burn(msg.sender , _amount);

217 uint256 _tokenPayoutAmount;

219 if (_positionToken == _pool.longToken) {
220 _tokenPayoutAmount = _pool.payoutLong; // net of fees
221 } else { // Can only be shortToken due to require statement at the beginning

223 _tokenPayoutAmount = _pool.payoutShort; // net of fees
224 }

226 // Calculate collateral amount to return
227 uint256 _amountToReturn = (_tokenPayoutAmount * _amount) / (10** uint256(

_decimals)); // decimal math with integers

229 // Return collateral to caller and reduce ‘collateralBalance ‘ accordingly
230 LibDiamond._returnCollateral(
231 _poolId ,
232 _pool.collateralToken ,
233 msg.sender ,
234 _amountToReturn
235 );
236 }
237 }

Listing 3.2: SettlementFacet::redeemPositionToken()

With that, we suggest to add a new event RedeemPositionToken(uint256 indexed poolId, uint256

indexed positionToken, address indexed from, uint256 amount, uint256 returnAmount) whenever user
redeems the position token. Also, the poolId/positionToken/from parameters are better indexed. Note
each emitted event is represented as a topic that usually consists of the signature (from a keccak256

hash) of the event name and the types (uint256, string, etc.) of its parameters. Each indexed
type will be treated like an additional topic. If an argument is not indexed, it will be attached as
data (instead of a separate topic). Considering that the poolId/positionToken/from parameters are
typically queried, it is better treated as topics, hence the need of being indexed.

Recommendation Properly emit the above-mentioned event when user redeems the position
token. This is very helpful for external analytics and reporting tools.

Status The issue has been fixed by this commit: 75646e8.

15/20 PeckShield Audit Report #: 2022-199

https://github.com/divaprotocol/diva-contracts/commit/75646e8


Public

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: GovernanceFacet

• Category: Security Features [5]

• CWE subcategory: CWE-287 [3]

Description

In the DIVA protocol, there is a privileged contractOwner account that plays a critical role in governing
and regulating the system-wide operations (e.g., set the fee rates and the treasury address). In the
following, we examine the privileged account and the related privileged accesses in current contract.

12 function setProtocolFee(uint96 _protocolFee)
13 external
14 override
15 onlyOwner
16 {
17 // Min fee introduced to have a minimum non -zero fee in ‘removeLiquidity ‘
18 if (_protocolFee > 0) {
19 require(
20 _protocolFee >= 100000000000000 ,
21 "DIVA: below min allowed"
22 ); // 0.01% = 0.0001
23 require(
24 _protocolFee <= 25000000000000000 ,
25 "DIVA: exceeds max allowed"
26 ); // 2.5% = 0.025
27 }
28
29 LibDiamond.GovernanceStorage storage gs = LibDiamond.governanceStorage ();
30 gs.protocolFee = _protocolFee;
31
32 emit ProtocolFeeSet(msg.sender , _protocolFee);
33 }
34
35 function setSettlementFee(uint96 _settlementFee)
36 external
37 override
38 onlyOwner
39 {
40 // Min fee introduced to have a minimum non -zero fee in ‘removeLiquidity ‘
41 if (_settlementFee > 0) {
42 require(
43 _settlementFee >= 100000000000000 ,
44 "DIVA: below min allowed"
45 ); // 0.01% = 0.0001
46 require(

16/20 PeckShield Audit Report #: 2022-199



Public

47 _settlementFee <= 25000000000000000 ,
48 "DIVA: exceeds max allowed"
49 ); // 2.5% = 0.025
50 }
51 LibDiamond.GovernanceStorage storage gs = LibDiamond.governanceStorage ();
52 gs.settlementFee = _settlementFee;
53
54 emit SettlementFeeSet(msg.sender , _settlementFee);
55 }

Listing 3.3: Example Privileged Operations in GovernanceFacet.sol

125 function setTreasuryAddress(address _newTreasury)
126 external
127 override
128 onlyOwner
129 {
130 require(_newTreasury != address (0), "DIVA: 0x0");
131
132 LibDiamond.GovernanceStorage storage gs = LibDiamond.governanceStorage ();
133 gs.treasury = _newTreasury;
134
135 emit TreasuryAddressSet(msg.sender , _newTreasury);
136 }

Listing 3.4: Example Privileged Operations in GovernanceFacet.sol

Notice that the privilege assignment is necessary and consistent with the protocol design. In
the meantime, the extra power to the owner may also be a counter-party risk to the protocol users.
Therefore, we list this concern as an issue here from the audit perspective and highly recommend
making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Making the above privileges explicit among protocol users.

Status This issue has been confirmed by the team. And the team clarifies that: The contract
owner will only have access to the privileged functionalities in the early phase of the protocol. Once
the protocol is proven stable and bug-free, we will renounce the ownership by transferring it to the
zero address. This will render the protocol immutable.

17/20 PeckShield Audit Report #: 2022-199



Public

3.4 Suggested immutable Usages For Gas Efficiency

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PositionToken

• Category: Coding Practices [6]

• CWE subcategory: CWE-1099 [1]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

In the following, we show the key state variables defined in PositionToken. If there is no need to
dynamically update these key state variables after the construction, they can be declared as either
constants or immutable for gas efficiency. In particular, the state variables _poolId/_owner/_decimals

can be defined as immutable as they will not be changed after their initialization in constructor().

18 c o n t r a c t Pos i t i onToken i s IPo s i t i onToken , ERC20 {
19 u in t256 p r i v a t e _pool Id ;
20 add r e s s p r i v a t e _owner ;
21 u int8 p r i v a t e _dec imals ;

23 c o n s t r u c t o r (
24 s t r i n g memory name_ ,
25 s t r i n g memory symbol_ ,
26 u in t256 poolId_ ,
27 u int8 dec imals_
28 ) ERC20(name_ , symbol_ ) {
29 _owner = msg . s ende r ;
30 _pool Id = pool Id_ ;
31 _decimals = dec imals_ ;
32 }
33 . . .
34 }

Listing 3.5: PositionToken. sol

18/20 PeckShield Audit Report #: 2022-199



Public

Recommendation Revisit the state variables definition and make extensive use of immutable

states for gas efficiency.

Status The issue has been fixed by this commit: 046226d.

19/20 PeckShield Audit Report #: 2022-199

https://github.com/divaprotocol/diva-contracts/commit/046226d


Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the DIVA protocol, which aims to
be a decentralized piece of infrastructure that allows its users to create and settle fully customizable
event-linked products (also known as derivatives) in a permissionless way. The current code base is
well organized and those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

20/20 PeckShield Audit Report #: 2022-199



Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/20 PeckShield Audit Report #: 2022-199

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About DIVA protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Validation on Function Arguments
	Suggested Event Generation For redeemPositionToken()
	Trust Issue of Admin Keys
	Suggested immutable Usages For Gas Efficiency

	Conclusion
	References

